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Abstract-Turbulent wall-jets on conical surfaces represent a practically useful situation and an important 
test for theoretical methods used for predicting turbulent transport. Experimental data on the velocity fields 
and the maximum concentration of a tracer gas have been obtained for turbulent wall-jets formed on conical 
surfaces of various angles. It is shown that the correct prediction of the data by a mixing-length hypothesis 
requires the mixing-length constant to be changed for each cone angle. A set of two-equation models of 
turbulence is then employed which solves two additional differential equations for the local properties of 
turbulence. These models correctly predict all the experimental data without the need for the adjustment of 

constants. 

a, 

C, 

initial radius of the conical geometry (at the 
slot); 
constant in the expression for jet-spread 
rate; 

C,, C,, C,, constants; 
tracer gas concentration at the surface; 
effective diffusive flux of species j; 
kinetic energy of fluctuations per unit 
mass; 
empirical constant in PML model; 
length-scale in PML model of turbulence; 
length-scale in two-equation turbulence 
models ; 
mass fraction of the species j in the fluid 
stream ; 
mass transfer rate across a boundary; 
Prandtl Mixing Length; 
distance from the axis of symmetry; 
distance from the axis of symmetry to the 
edge of the boundary layer; 
mean velocity in x and Y directions, 
respectively ; 
velocity at the slot; 
maximum velocity; 
streamwise and cross-stream distances 
along and from solid boundary; 
slot-width ; 
characteristic thickness of the boundary 
layer ; 
value of y corresponding to half of the 
maximum velocity; 
turbulence property, a combination of k 
and L. 

Greek symbols 
tf, angle between the main flow direction and 

the axis of symmetry (also represents the 
half-angle of the conical geomet~); 
effective Schmidt number; 
constants; 
boundary layer thickness; 
effective viscosity, empirical constant in 
PML models ; 
empirical constant in PML model; 
density of the jet-fluid (air); 
effective shear stress. 

1. INTRODUCTION 

THE FLOW configuration of a fluid jet impinging on a 
target surface occurs in a variety of engineering 
situations and forms the basis of the wall-jet, which 
may be described as a jet blown through an injection 
slot over a solid surface. When the jet impinges normal 
to a flat surface and spreads out radially along the 
surface, the resulting flow development is termed a 
radial wall-jet. A plane wall-jet would occur if the jet 
was blown tangentially to a flat surface. Published 
literature deals primarily with these two types of wall- 
jet. Starr and Sparrow [ 11, and Manian et al. [2] have 
reported investigations on a cylindrical wall-jet. A 
cylindrical wall-jet is created when a jet emerges from 
an annular slot and ff ows longitudinally and co-axially 
over a cylindrical surface. 

In the present study, a continuous geometrical 
transition was conceived as including conical wall-jets 
between plane and radial wall-jets, where a, the angle 
between the main flow direction and the axis of 
symmetry. changed continuously from 0 to 90’. The 
cylindrical wall-jet (c( = 0) would approximate to a 
plane wall-jet if the radius of the cylinder becomes very 
large. A conical wall-jet can, therefore, be defined as a 
jet blown through an annular slot along a conical 
surface. 
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1.1. ~o~iva~~o~ and objective of the present study 
The practical need for computation of turbulent 

flows is pressing notwithstanding the fact that the 
known mechanism of turbulent transfer is still not fully 
comprehensive. Various turbulence models have been 
proposed. The primary function of a turbulence model 
is to calculate effective viscosity, peffr if the turbulent- 
exchange laws are taken equivalent in form to the 
Newton’s Law of Viscosity for a laminar flow, i.e. the 
effective shear stress, r, representing the sum of laminar 
and turbulent shear stresses may be expressed as 

5 = &,rr (i’u/?r) (1.1) 

where ?u/?_v is the velocity gradient. it is in this context, 
that, of late, shortcomings of Prandtl Mixing Length 
(PML) model, which expresses lletr as a function of a 
length scale ([) and a local velocity gradient, have been 
recognized. This length scale 1 is expressed in terms of 
the constants K and i. With the help of a simple mass 
and momentum balance, it can be shown that the 
values of these constants for the radial wall-jet case are 
2’ ‘I times their values for the plane wall-jet case i.e. 

(EC, jb)radial = 2’ ’ (K &rane. (1.2) 

The motivation for selecting the present flow-system 
came from the hypothesis that the abrupt changes in 
(K, I&)-values, as represented by equation (1.2), should 
be, in fact, continuous, to give rise, as mentioned 
earlier, to a set of conical wall-jets. 

The conical wall-jets, though apparently similar, 
offer continuously varying flow situations with the key 
variable, x, assuming different values. This provides a 
convenient, yet critical, testing ground for the universal 
validity of a turbulence model. Universality implies 
that a single set of empirical constants, inserted in the 
equations, would provide satisfactory predictions for a 
large variety of flows. Basically the purpose of the 
present study is to assess and establish the universal 
character of a class of turbulence models (two- 
equation turbulence models) against the varying flow 
situations ofconical wall-jets. It is neither the purpose 
of the present study to develop a turbulence model nor 
to modify or sophisticate the existing ones. 

The models, therefore, have been used in forms as 
reported. A brief mention of the models used would be 
appropriate and is, therefore, included. An excellent 
survey of existing turbulence models have been given 
by Rodi and Spalding [3]. Recently, Launder and 
Spalding [43 have given the main concepts and have 
discussed these models together with their application 
to divergent flow situations. 

2. THE TURBULENCE MODELS 

The PML model and two-equation turbulence 
models have been used for predictions and subsequent 
comparisons with experimental data. The simple and 
the most widely used PML model is examined first. 

2.1. Prandtl mixing length (PML. ) model and its usefor 
conical wall-jets 

According to the PML model, the effective viscosity 
is given by the expression 

/&I = PI2 I W.vI. (2.1) 

In the present context of wall-jets which are essentially 
either 2-dim. or axisymmetric boundary layers along a 
single wall, the distribution of I is taken after the 
recommendations of Escudier [S] 

1 = Ky; y I (i/f<) y, G.2) 

and 

(2.3) 

where y, is a characteristic thickness of the boundary 
layer. 

A typical flow configuration of a conical wall-jet is 
shown in Fig. 1. It can be assumed without incurring 
serious error that the momentum lost in the thin wall 
region can be neglected in comparison to the total 
momentum at any stream station x. Thus 

~u22~rd~ = 0 

where r, the distance from the axis of symmetry to a 
point in the boundary layer, called local radius, is given 

by 

r = a + xsina + ycosa (2.5) 

and u, following similarity of velocity profiles, can be 
represented as 

5 = KY/@. (2.6) 
l&IX 

Sharma [6] has observed similarities in the velocity 
profiles up to a distance of 0.06 cm from the wall. It is 
assumed that the profile extends right up to the wall 
and, therefore, momentum lost at the wall is not 
accounted for, as mentioned earlier, and has been 
neglected. Equation (2.4) can now be integrated to give 

I I I 
1.2 

u,,, (a f xsincc)6” + 6’cosa 
L 

= const. 

(2.7) 

FIG. I. A typical conical wail-jet Bow system. 
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WhtXe: 

Next, a mass bahce is taken at any x 

where mE is the mass of fluid entrapped from the 
surroundings per unit length of the boundary Iayer 
periphery, and rE is the distance from the axis of 
s~metry to the edge of boundary layer, With proper 
substitutions for II and r, equation (2.8) reduces to 

For the given Bow s~t~at~on~ the fo~~w~~g approxi- 
mation is used 

3 = !!!I 
IQ I= 

(2.10) 

and also, for 8 cuastant jet-spread I”BFC which is 
jnde~nd~nt of 0: 

8/x = c i2.r 11 

where c is a constant. 
With the help of equations (2.7), (2.10) and (2.11), 
equation (2.9) finally reduces to 

i/Zffx + 2~~~~~) CX sin tL + 2c” x coos ix] 

- in txsina f cxcosdf 

From the expression of entrainment at the free boun- 
dary, the term ~~~~~~~~) can be taken as pro- 
~~rt~ona~ to A$ where &is the constant co~~~o~~d~~g 
to a specified vah~e ofct. Thus, the ratio of the constants 
for the radial wall-jet (@ = 90*), where x is sufficiently 
large so that a can !x neglected in equation (2,12) and 
plane wall-jet (a = 0. Q- = Y-_ would be 

&Siial G&al -.-+-.-=-~ 
K 

2x:2_ QS3) 
fl”PlSlfZ pian* 

For any other values of CC, at large values of x 

ft can be inferred from the fore~o~~~ approximate 
analysis that K and L are not. in fact, universal 
constants since they depend on the apex angle of the 
cone. The PML modei is, therefore, not quite adequate 
to be employed in predictions for conical wall-jet flows 
with a constant set of values for X. and k. Predictions 
based on the PML model and comparisons with the 
data are discussed later. 

Rolmogorov [7$ Prandtl [Sj and Emmons [9] 
~ndependentiy proposed that the Xocai state of turbd- 
ence of a Auid can be characterised by onnly two 
quantities, the kinetic energy of the turbufent velocity 
~~~~ua~jons k, and 51 length state L. On the basis of this 
concept, jfeff can be expressed in the following form : 

peff = p k”” t. (2.15) 

The main ~har~~t~r~st~~ of the two~eq~t~o~ model is 
that k and f, are determined by differentiaf equations 
describing the transport of k and L separately. If k is 
already calculated, then the dependent variable for the 
scxond equation ea:uufd instead be a variable Z, made 
up of a combination of!~ and t. defined in the following 
way : 

Z=fr”LS i2.lfij 

where m and M are exponents. Three principal models 
afthis type have been investigated in the present study. 
ft is essentially the form of 2, which distinguishes one 
model from the other. Tahfe t sp&ies the Forms itr 
which Z is chosen. 

3. MATHEMATICAL FORMULATION 

The wall-jet flows under ~onsid~~~~on are Essex 
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Table 2. Expressions for S 

Z S 

kL - [702 (L/Y)~ k=] 

k/L2 3.5 j& (82 u/ayz)2 

k’ ‘IL 0 
-___ 

tially boundary layers. The analysis, therefore, would 
be for 2-dim. boundary layers neglecting the effects of 
pressure gradients and body forces. The appropriate 
coordinate system is sketched in Fig. 1, where the .x- 
coordinate is along the solid boundary, and the y- 
coordinate normal to it. The governing differential 
equations are as follows : 

Conservation of mass 

2 (pur) + ; (pw) = 0. 

(3.2) 

Consewation of chemical species j 

where mj is the mass-fraction of the species j. Its 
effective diffusive flux, J, is expressed in a similar way 
as t, i.e. 

where cj is the effective Schmidt number, treated as an 
empirical constant in the present study. 

Conservation of turbulent kinetic energy 
The 2-dim. boundary layer equation for turbulent 

kinetic energy, lc, can be obtained from the 
Navier-Stokes equation. The equation so obtained, 
through a set of approximations due to Prandtl, 
Kolmogorov etc., is finally reduced to the following 
term : 

+ kp![$)) _ !?$!!I. (3.5) 

Consewation qf Z 
Rotta [13] derived the transport equations appro- 

priate to boundary layer flows for the length scale Land 
kL from general Navier-Stokes equations together 
with the concept of the statistical behaviour of turbul- 
ence. Later on, a general equation for Z was for- 

mulated. As pointed out earlier, it is the physical 
interpretation of 2 which differentiates one model 
from the other. In mathematical representation they 
are otherwise similar. One form ofdifferential equation 
can be manipulated to give the other form. Launder 
and Spalding [4] have discussed the basic concepts of 
the Z-equation, of which a common form for 2-dim. 
boundary layer flows, can be written as 

z! 172 1 ii Tru.,, $Zl 

+Z[~~)2-~]+S (36) 

where oz, C, and C, in the present study are assumed 
constants. The additional term S represents secondary 
source terms which differ according to the physical 
meaning of the variable Z; the particular forms of S are 
included in Table 2. 

4. SOLUTION PROCEDURE 

In order to predict the hydrodynamical properties of 
interest, the equations for momentum, k and 2 must be 
solved simultaneously together with the auxiliary 
relation (1.1) and the boundary conditions. For pre- 
diction of tracer-gas concentrations, equations (3.3 
and 3.4) are also to be included. The equations are 
parabolic and the solution can be obtained numeri- 
cally by a finite-difference scheme. In the present case, 
the finite-difference method of Spalding and Patankar 
[14], which integrates the equations in a forward- 
marching procedure, was used. 

The differential equations employed for numerical 
computations contain the terms C,, ok, ez, C,, C, and 
CT~, which in the absence of definite information have 
been assumed constant for high Reynolds numbers. 
The magnitudes of these constants, derived from 
diverse experimental evidence, have been taken from 
their quoted values by Launder and Spalding [ 153, and 
are shown in Table 3. 

The conditions at the free-boundary were taken as 
follows : 

The details of inner boundary conditions based on 
Couette-flow analysis and starting profiles needed to 
initiate the numerical computation can be found in ref. 
[6] or [lo]. 

5 EXPERIMENTAL PRO~RA~ME 

A general schematic diagram of the experimental 
set-up is given in Fig. 2. It essentially consists of a given 
cone geometry pushed into a brass diffuser, with the 
same apex angle as the cone, to the extent that a 
desired annular gap-width is created between the 
diffuser and the cone. Air from the pipe was blown 
through this annular gap along the surface of the cone, 
as a wall-jet. A detailed description of the apparatus, 
alignment and test procedures, sources of error and 
data reduction is reported by Sharma [6]. 



Numerical computations of wall-jet flows 

Table 3. Magnitudes of numerical constants involved in the differential equations 
.-- 

Dependent 
variable c, c, CD Ok 07. gj 

_ 

kL 0.98 0.059 0.09 1.0 1.0 

k/L= 1.04 0.170 0.09 0.9 0.9 

k3 “/L 1.45 0.140 0.07 1.0 1.1 

‘“j 0.9 
-- I___- 

FIG. 2. General arrangement of the experimental set-up. 
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An experimental investigation was undertaken to 
generate the following data: 

(1) Velocity profile measurements at various dis- 
tances from the slot along the surface of different 
conical wall-jet systems. The growth rate of the jet and 
decay of maximum velocity, needed for comparison 
with the predicted values on the basis of a turbuience 
model, can be derived from the velocity profile data. 

(2) Surface concentration measurements of a tracer 
gas at different positions along the longitudinal surface 
of the same set of conical geometries as in (1) above. 
Acetylene, the tracer gas, was introduced near the inlet 
length of pipe carrying main air-flow. Since the 
surface of the conical geometry was impervious and 
chemically inert, the maxima of concentration profile 
at a stream position occurred at the surface itself. 
Therefore, the stream concentrations of the tracer gas 
measured at the surface, in fact, represent the maxi- 
mum concentration of the gas at the given position. 

6. RESULTS AND DlSCUSSION 

In order to compare with the experimental data, the 
predictions have been reduced to represent the follow- 
ing properties : 

(1) Rate of jet-spread. 
(2) Axial decay of maximum velocity. 
(3) Dimensionless velocity profiles. 
(4) Axial decay of maximum concentration of the 

tracer gas. 

All the comparisons of theoretical and experimental 
results have not been shown because of repetitive 
trends. Instead, results for all the S cone-geometries 
corresponding to one slot-width of the order of 0.3 cm 
have been given, although the generality of results has 
been emphasized at appropriate places. Also, the 
characteristic findings for the predictions based on the 
PML model have been grouped separately to bring 
forth itsinherent limitations, at least in reference to the 
present fow systems. 

Figure 3 depicts the jet-spread for the 5 cone- 
geometries. It can be observed that the predictions 
based on the k-w model fit the data better. This 
observation, however, is not generally true with respect 
to data of the remaining slot-widths. Qualitative 
agreement of the predictions based on two-equation 
models with the corresponding data are summarized 
in Table 4, where the degree of agreement has been 
Iabelled with expressions like poor, satisfactory, fair, 
good or excellent. Reference to these labels could be 
drawn from Fig. 3. A scrutiny of the table suggests that 
the two-equation models possess the universal charac- 
ter for jet-spread predictions. With an overview for the 
given conditions, the k--E model seems to have more 
potential. 

Figure 4 shows the comparisons for u,,,-decay. The 
extent of agreement, in terms similar to those used for 
jet-spread, are also included in Table 4 to which Fig. 4 
serves as a reference. An examination of the table here 
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FIG, 3. Jet-spread. 

also suggests that the universal character of the two- 
equation models is retained and, as in the case of jet- 
spread, the k--E model on the whole seems to make 
better predictions. 

Velocity profiles, experimental and theoretical, for a 
typical cone-geometry (a = 54”) are shown in Fig. 5. It 
can be observed that there is not much difference in the 
predicted velocity profiles and they compare well with 
the experimental profiles. Similar trends were observed 
in the comparisons when profiles for the rest of the flow 
systems were studied. It should be noted that the 
computational method presumes an empirical velocity 
profile in the wall region. Therefore, comparisons of 
the profile in the wall region are without any purpose 
as they are same and not unique to any turbulence 
model. 

Theoretical profiles of k and L are not included for 
discussion since, in the absence of relevant data, no 
comparisons were possible. 

The streamwise decay of the maximum concen- 
tration of the tracer gas (C,) is shown in Fig. 6. It is 
evident that all the turbulence models are successful in 
predicting the C,-decay within acceptable limits of 

accuracy. The results of comparisons between the 
predicted and experimental decay of maximum con- 
centration are summarized in Table 5. Here too, the 
predictions follow the earlier patterns. 

From the foregoing findings it can be concluded that 
the two-equation turbulence models are capable of 
successfully predicting the properties of diverse flows 
with the same set of constants involved in the differen- 
tial equations, a situation which lends universal char- 
acter to the models. 

It is evident from Figs. 3.4 and 6 that fixed values of 
K and L (0.435 and 0.09) fail completely to yield 
satisfactory predictions for the present flow systems. It 
can be observed that the resulting discrepancies in 
predictions relatively decrease from 90 to 0” cone 
angles. When these constants, however, were adjusted 
for the best fit, keeping the ratio K/L constant [14], the 
predicted curves (A) agree well with the experimental 
data. Additional data taken on a cylinder (a = 0), as 
shown in Fig. 7, further confirm these trends. 

The values of these adjusted constants are plotted in 
Fig. 8 against CI. The continuous curve represents the 
values of K, or &calculated from equation (2.14). The 
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Table 4. Qualitative agreement of predicted jet-spread and urnax- decay with experimental data, P = poor; S = satisfactory ; 
F = fair; G = good; E = excellent 

Ci 
(degrees) 

90.0 

70.08 

53.92 

37.12 

11.25 

YC 
(cm) 

0.099 1 
0.1956 
0.2921 
0.5842 
1.2573 

0.1016 
0.1956 
0.3048 
0.6350 
1.2700 

0.1029 
0.2057 
0.3073 
0.6058 
1.2725 

0.1016 
0.1956 
0.3150 
0.6210 
1.2650 

0.1016 
0.1965 
0.2921 
0.6020 
1.2624 

Agreement of the predicted 
jet-spread 

k-kL k-c k-w 

F S P 
s E P 
P P s 
P G P 
G S P 

P F P 
P F P 
P P G 
E S P 
G S P 

F S S 
P P P 
P P F 
P E P 
S F P 

S F P 
P G 
P P : 
P F P 
S E P 

G E P 
G E P 
P P s 
F E P 
G F P 

Agreement of the predicted 
a,,,-decay 

k-kL k-c 

F S 
F G 
G S 
G S 
G S 

S F 
S F 
G G 
E S 
G S 

F S 
P P 
P S 
P E 
G F 

S F 
P G 
P P 
P G 
S E 

G E 
G E 
S S 
F E 
G F 

. 
. 

. 

- Expar~mantol potnts 

- PML modal 

- k-kL modal 

- k-E model 
.z 0 - k-w model 

E PML(k=O L35,h:O 09) 

kkw 

P 
P 
P 
P 
P 

P 
P 
P 
P 
P 

S 
S 
S 
P 
P 

P 
P 
G 
P 
S 

P 
P 
P 
P 
P 

____ 

FIG. 4. Decay of maximum velocity 



1716 R. N. SHARMA and S. V. P~rmum 

14- 

12- 

10- 

i 1 08 
IJ 

Urnax 
06- 

0A- 

02- 

1 

B - k-kL model 
C -k-E model 

1 D - k-w model 

.Ol 02 04 06 I 2 461 2 4 

y/ y1/2- 

FIG. 5. Velocity profiles. 

reference values of the constants for a = 90” were taken 
as K = 0.8 and i = 0.1 which are the best adjusted 

values to fit the present data. Patankar and Spalding 
1141 also report the same values of these constants for 
the best fit on their own and Baker’s data 1161. It 
should be recognised that calculated values of K or A 
from equation (2.14) would not be satisfactory at 
smaller values of c( as is evident from equation (2.12). 
The continuous curve is, therefore, extrapolated (dot- 
ted line) from about 37”. The extrapolated value of 
KJK,, matches fairly well with the experimental value 
at c( = 0’. It is anticipated that K/i would change 
during the transition from a cylindrical wall-jet to a 
plane wall-jet (r --t x ) and the major change would be 
in K rather than in i since the nature of the free 
boundary does not change much. This transition, 

however, requires further study. 
Figure 8 illustrates, at least as an approximation, the 

validity of the analysis culminating in equation (2.14). 
It is thus clear that K. i,-values vary gradually from one 
extreme of a conical wall-jet (plane wall-jet) to the 
other extreme (radial wall-jet). K and A, therefore, are 

. 

. -Exptl polntS 
A PML- model(adJusted) 
B -k-kL model 
C -k-E model 
D -k -w mode\ 
E -PML(k=‘435,h=09) 

1 

FIG. 6. Decay of maximum concentration of tracer gas 
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Table 5. Qualitative agreement of the predicted decay of maximum 
concentration of the tracer gas (acetylene), P = poor; S = satisfactory; 

F = fair: G = good; E = excellent 

1717 

(degrees) ” . (cm) 
a I’.. Agreement of the predicted C,-decay 

-k-kL k-c k-w 

G P 
S P 
G P 

: 
G 
P 

P P 

G S 

: 
P 
P 

90.0 0.3226 
0.6350 
1.2624 

70.08 0.3302 
0.6350 
1.2649 

53.92 0.3277 
0.6350 
1.2675 

37.12 0.3175 
0.6350 
1.2675 

11.25 0.3327 
0.6325 
I.2675 

s; 
F 

Fi 
S 

G 
F 
S 

P 
s 
S 

S 
S 
P 

P G 
F P 
F P 

: 
F 
F 

F G 

2- 

1 , 1 
10 20 30 40 60 80 100 200 30’3 

X/Y, - 

K =O’,yc 10.302 cm , 
- A -PhII_ madeltk =O 65, h =O 081) 
__-__ E -PML model(k ~0435, h a09 ) 

FIG. 7. Jet-spread and decay of maximum velocity. 

not universal constants. Rodi and Spalding (31 have 
reported similar observations with free-jet studies. 
This indicates that the underlying model of turbulence 
lacks some important features. The main cause of this 
inadequacy probably lies in length-scale specification. 
Experience has shown that the algebraic specifi- 
cation off must vary with the nature of the geometry or 
boundary conditions. This can be accounted for in the 
PML model only by adjusting the constants. The two- 
equation turbulence models, on the other hand, turn 
out to be superior in this regard, because they solve a 
di~erential equation for the length-scale and predict, 
rather than assume, what the length-scale distribution 
should be. 

Finally, it should be noted that the empirical 
constants C,, C,, C,, bk, a, and oj are still being tuned 
by computer optimization of predictions for a wide 
range of experimentalIy documented ffows. Therefore, 
till final values are assigned to these constants, an 
attempt to distinguish the accuracy of predictions of 

!!!& 1 

y,(cm) 
‘;f th,,d, c 

0 0.20 
0 0,30 
0 0.60 
. l-26 

90” 70” 5c 37” 11” 0” 

cc (degmesf- 
1 

FIG. 8. Comparison of KJK,,. 

one from the other would be rather premature. The 
aim of the present study has not been to recommend a 
particular two-equation model, but instead, as a first 
step, to establish the universal character of the models; 
that is to check if the same set of constants involved in 
different models can successfully predict the properties 
of diverse flows. And in this respect, the two-equation 
models do achieve the necessary objective when used 
to predict the conical wall-jet development. 
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7. CONCLUSIONS 

The two-equation turbulence models, in which 
the mixing length is not specified algebraically but 
through a differential equation, can be used as a 
successful basis for predicting the boundary layer 
development of different conical wall-jets. 

As an auxiliary observation, it can be added that the 
performance of the kmodel seems to be encouraging. 
This, however, is not conclusive since the present study 
was not directed to evaluate the performance of the 
different two-equation models. 

Also, the PML model is inadequate to predict 
satisfactorily the properties of conical wall-jets with 
fixed constants (k = 0.435; /I = 0.09). A correlation 
has been developed which calculates the value of the 
constants for different cone geometries. These calcu- 
lated values agree well with the ones adjusted for the 
best fit with the experimental data. 
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CALCUL NUMERIQUE DES JETS PARIETAUX 

Rkum-Les jets pariktaux turb~lents sur des surfaces coniques repr&entent une situation pratique et un 
test important pour les m&bodes thkoriques de prgdiction de convection turbulente. Des don&es 
expkimentales sur ks champs de vitesse et sur la con~n~ation maximale d’un gaz traceur ont &tt obtenues 

pour des surfaces coniques avec des angles variis. On montre que la p&vision correcte des rksultats par une 

hypothgse de longueur de mtlange demande que la constante de longeur de mdlange soit changCe pour 
cbaque angle du cone. On utilisepar suite un systeme de modtles B deux 6quations qui r&out deux Cquations 

diff&entielles additionnelles pour les propri&ts locales de la turbulence, Ces moddles reprisentent 
correctement tous les rdsultats exp&imentaux sans nicessiter l’ajustement des constantes. 

NUMERISCHE BERECHNUNC VON WANDSTRAHLSTROMUNGEN 

Zusammenfassung-Turbulente Wandstrahlstramungen an konischen OberHBchen stellen einen praktisch 
bedeutenden Zustand und einen wichtigen Test fiir theoretische Methoden dar, die zur Berechnung von 
turbulentem Transport benutzt werden. Experimentelle Daten der Geschwindigkeitsfelder und der 
maximalen Konzentration eines Indikatorgases wurden fiir turbulente Wandstrahlen an konischen 
Obe&&hen verschiedener Winkel gewonnen. Es wird gezeigt, da13 eine genaue Berechnung dieser Werte 
durch eine Mi~hungsweg-H~othe~ eine Mischungsweg-Kons~te erfordert, die fiir jeden Konuswinkel 
gegndert werden mu8 Daher wurde ein Satz von Zwei-Gieichungs-Modelien der Turbulenz, bei denen zwei 
zusatzliche Differentialgleichungen fiir die lokalen Turbulenzeigen~haften gel&t werden, verwendet. Diese 
Modelle geben die experimentellen Daten genau wieder, ohne da8 Konstanten angepai% werden miiBten. 

qMCJIEHHbIE PACqETbI IIPWCTEHHblX CTPYR 

AHHoTnUwn-Typ6yneHTHbIe npMcTeHHbre CTpyu Ha KomwecKkix noeepxHocTRx npeacTasnnloT He TOnbKO 

CaMOCTOITe,IbHbIi-4 npaKTWeCKHfi HHTepeC, HO Hcnonbsyrorcn TaKwe AnsI npoeepKw TeopeTwecKMx 

MeToAoa pacqeTa Typ6yJIeHTHOrO IlepeHoca. B pa6OTe nonyVeHbl 3KCnepMMeNTaflbHbIe AaHHble no 

,,o,,RM CKopOCTn li MBHBMaJlbHOti KOHUeHTpaUHA BAyBaeMOrO ra38 Ann Typ6yJIeHTHbIX npklCTeHHbrX 

CTpyii Ha KOHycaX C pa3JIH’IHbIMH yr.“aMH paCTaOpa. noKa3aHo. wo A;la npasanbnoro 0nHcamm 

3KCnepHMeHTaJlbHNX AaHHbIX Ha OCHOBe ,XIIOTC3bl 0 “YTR CMemeHHR HeO6XOAHMO AJlS KamAOrO 

yrna paCTBopa KOHyCa MeHRTb 3tiaYeHEie KOHCTa”Tl4 B BbIpaXE=HH AWI ity-ru. CMeUIeHWiI. B Cl311312 

C 3Tiih4 6bW HCllOXb30BaH PRR MOlWCii Typby.WHTHOCTU, COCTOIlmllX H3 AByX AOnO~IHRTeJibHblX 

~~~~~~U~anbHblX ypaBHeH~~ &WI JIOKaJIbHbIX xapaKTep5icruK Typ6yne~tT~OCT~. 3TII MoAenII 

~~a~~~b~o on~~b,aa~T 3KCnepHMe~a~bHbl~ AaHHble A He Tpe6yioT COOTaeTCTBy~me~ uOArOHK~ 

KO3~~~U~eHTOa. 


